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Abstract. We establish matrix versions of refinements due to Alzer [1],

Cartwright and Field [4], and Mercer [5] of the standard arithmetic-

geometric-harmonic mean inequality for scalars.

1. Introduction

The classical arithmetic-geometric mean inequality asserts that if w1, . . . , wk are pos-
itive numbers summing to 1 and x1, . . . , xk are positive numbers, then the arithmetic
mean

Aw = Aw(x1, . . . , xk) := w1x1 + · · ·+ wkxk

is at least as great as the geometric mean

Gw = Gw(x1, . . . , xk) := xw1
1 · · ·x

wk
k .

As this is a consequence of the relatively simple property of convexity of the logarithm
function, it is natural to expect more complex and precise relationships to exist between
Aw and Gw. Indeed, many authors (for example, Alzer [1], Mercer [5]) have refined the
inequality Aw − Gw ≥ 0. A particularly interesting result, due to Cartwright and Field
[4], gives both upper and lower bounds for Aw − Gw in terms of the variance associated
with the arithmetic mean.

Theorem 1 (Cartwright-Field) Let wi (1 ≤ i ≤ k) be positive numbers summing to 1.
If xi (1 ≤ i ≤ k) are positive numbers in the interval [a, b], where a > 0, then

1

2b

k∑
j=1

wj(xj − Aw)2 ≤ Aw −Gw ≤
1

2a

k∑
j=1

wj(xj − Aw)2.

Cartwright and Field noted that their inequality is sharp, in the sense that there may be
equality on both sides.
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Recently, Mercer [5] discovered an extensive collection of inequalities with the same
general flavor as those of Cartwright and Field. For now, our emphasis is on extending
the Cartwright-Field inequality to positive matrices. It is reasonable to hope that such
an extension exists, since Ando [2] and Sagae and Tanabe [7] succeeded in establishing
an arithmetic-geometric mean inequality for positive matrices. We recall that the n × n
matrix M is positive if the inner product < Mx, x > is positive for all non-zero complex
n-vectors x.

2. The geometric mean of positive matrices

One problem inherent in working with the geometric mean of positive n× n matrices
(at least in the case of non-commuting matrices) is finding an appropriate definition. A
major stumbling block is that if M1, M2 are positive n×n matrices, their product M1M2

need not be positive, and fractional powers cannot be defined adequately.
Ando’s definition [2] (but see also [6]) of the geometric mean of two equally weighted,

(i.e. w1 = w2 = 1/2) positive matrices M1, M2 was

G(M1,M2) := M
1
2
2

(
M
− 1

2
2 M1M

− 1
2

2

) 1
2

M
1
2
2 ,

where all square roots are positive square roots. By design, G(M1,M2) > 0. Remarkably,
in spite of the apparent asymmetry of the definition,

G(M1,M2) = G(M2,M1).

This commutativity property is a consequence of an important extremal property [2, 6]:
G(M1,M2) is the least positive n× n matrix M with the property that(

M1 M
M M2

)
≥ 0.

It is interesting, however, to give a simple direct proof, that does not seen to have been
noted before.

Observe that G(M1,M2) = G(M2,M1) is equivalent to

M
− 1

2
1 M

1
2
2

(
M
− 1

2
2 M1M

− 1
2

2

) 1
2

M
1
2
2 M

− 1
2

1 =
(
M
− 1

2
1 M2M

− 1
2

1

) 1
2

.

As positive matrices are equal if and only if their squares are equal, this is in turn equiv-
alent to

M
− 1

2
1 M

1
2
2

(
M
− 1

2
2 M1M

− 1
2

2

) 1
2
[
M

1
2
2 M

−1
1 M

1
2
2

] (
M
− 1

2
2 M1M

− 1
2

2

) 1
2

M
1
2
2 M

− 1
2

1 = M
− 1

2
1 M2M

− 1
2

1 .

Since the term in square brackets is just
(
M
− 1

2
2 M1M

− 1
2

2

)−1
, the left hand side of the

expression above does indeed reduce to the right hand side.
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Building on Ando’s success in showing that

G(M1,M2) ≤ A(M1,M2) :=
1

2
M1 +

1

2
M2,

Sagae and Tanabe [7] introduced more general geometric means of an arbitrary number
of positive n × n matrices. For positive numbers w1, . . . , wk summing to 1 and positive
n × n matrices M1, . . . ,Mk, they defined the geometric mean Gw = Gw(M1, . . . ,Mk) to
be

M
1
2
k (M

− 1
2

k M
1
2
k−1 · · · (M

− 1
2

3 M
1
2
2 (M

− 1
2

2 M1M
− 1

2
2 )u1M

1
2
2 M

− 1
2

3 )u2 · · ·M
1
2
k−1M

− 1
2

k )uk−1M
1
2
k ,

where ui = 1−

(
wi+1 /

i+1∑
j=1

wj

)
for i = 1, . . . , k− 1. All powers are to be interpreted as

positive powers, so Gw is easily seen to be positive. If n = 2, then

Gw(M1,M2) = M
1
2
2 (M

− 1
2

2 M1M
− 1

2
2 )w1M

1
2
2 ,

which is consistent with Ando’s definition of the geometric mean of two matrices in the
case w1 = w2 = 1/2.

Sagae and Tanabe showed that with the natural definition of the weighted matrix
arithmetic mean as

Aw(M1, . . . ,Mk) := w1M1 + · · ·+ wkMk,

the matrix analog of the arithmetic-geometric mean inequality is true. In other words,

Gw(M1, . . . ,Mk) ≤ Aw(M1, . . . ,Mk).

Nevertheless, their matrix geometric mean has a drawback that is potentially prob-
lematic in the search for more refined inequalities: the matrix geometric mean of more
than two matrices is order dependent. Since this does not appear to have been observed
before, we give a simple example generated by Mathematica.

We work with the case k = 3 and equal weights w1 = w2 = w3 = 1/3. Two possible
geometric means of positive matrices M1, M2 and M3 are

G(M3,M2,M1) = M
1/2
1

(
M
−1/2
1 M

1/2
2

(
M
−1/2
2 M3M

−1/2
2

)1/2
M

1/2
2 M

−1/2
1

)2/3

M
1/2
1

and

G(M1,M2,M3) = M
1/2
3

(
M
−1/2
3 M

1/2
2

(
M
−1/2
2 M1M

−1/2
2

)1/2
M

1/2
2 M

−1/2
3

)2/3

M
1/2
3 .

But, if

M1 :=

(
3 1
1 1

)
, M2 :=

(
2 0
0 1

)
and M3 :=

(
1 1
1 2

)
,
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then, after computing with Mathematica, we find

G(M3,M2,M1) =

(
1.64446 0.614542
0.614542 1.19496

)
, G(M1,M2,M3) =

(
1.61321 0.605703
0.605703 1.21141

)
.

In other words, G(M1,M2,M3) 6= G(M3,M2,M1).

3. Matrix versions of the cartwright-field inequality

Our first objective is to establish a version of the Cartwright-Field inequality for two
positive matrices. The proof will depend on a result equivalent to special case of the
original inequality with x1 = t, x2 = 1. We give a proof that is different from those
published previously.

Lemma 1 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1. If t ∈ (0, 1], then

w1t
2 + w2t− tw1+1 ≤ 1

2
w1w2(t− 1)2 ≤ w1t + w2 − tw1 .

Equality holds if and only if t = 1.

Proof We first prove the right hand inequality. Consider

f(t) = tw1 − w1t− w2 +
1

2
w1w2(t− 1)2.

Since
f ′′(t) = w1(w1 − 1)tw1−2 + w1w2 = w1w2(1− tw1−2) ≤ 0

for all t ∈ (0, 1], the first derivative f ′ is decreasing on (0, 1], and so f ′(t) ≥ f ′(1) = 0 for
all t ∈ (0, 1]. This implies that f is increasing on (0, 1], and so f(t) ≤ f(1) = 0 for all
t ∈ (0, 1]. We have thus established the right hand inequality. It is obvious that equality
holds if and only if t = 1.

The left hand inequality is proved similarly. Consider

g(t) = tw1+1 − w1t
2 − w2t +

1

2
w1w2(t− 1)2,

then
g′(t) = (w1 + 1)tw1 − 2w1t− w2 + w1w2(t− 1),

g′′(t) = w1(w1 + 1)tw1−1 − 2w1 + w1w2,

and hence
g′′′(t) = (w1 + 1)w1(w1 − 1)tw1−2 < 0

for all t ∈ (0, 1], the second derivative g′′ is decreasing on (0, 1], and so g′′(t) ≥ g′′(1) = 0
for all t ∈ (0, 1]. This implies that g′ is increasing on (0, 1], and so g′(t) ≤ g′(1) = 0 for
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all t ∈ (0, 1]. Hence, g is decreasing on (0, 1], and g(t) ≥ g(1) = 0 for all t ∈ (0, 1]. We
have therefore proved the left hand inequality. Again it is obvious that equality holds if
and only if t = 1.

With the aid of this lemma, we can refine a method of Ando [2] to prove a matrix
version of the Cartwright-Field inequality for two positive matrices.

Theorem 2 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1. Let M1, M2 be positive n × n
matrices with M1 ≤M2. Write Aw = Aw(M1,M2) and Gw = Gw(M1,M2). Then

1

2

2∑
j=1

wj(Mj − Aw)M−1
2 (Mj − Aw) ≤ Aw −Gw ≤

1

2

2∑
j=1

wj(Mj − Aw)M−1
1 (Mj − Aw).

Equality holds if and only if M1 = M2.

Proof We start with the left hand inequality. The fact that M1−Aw and M2−Aw are

proportional will allow us to work with a ‘single variable’ N := M
− 1

2
2 M1M

− 1
2

2 . Observe
that

2∑
j=1

wj(Mj − Aw)M−1
2 (Mj − Aw)

= w1(w2M1 − w2M2)M
−1
2 (w2M1 − w2M2) + w2(w1M2 − w1M1)M

−1
2 (w1M2 − w1M1)

= w1w2(w1 + w2)(M1 −M2)M
−1
2 (M1 −M2)

= w1w2M
1
2
2 (I −N)2M

1
2
2 ,

where I is the n× n identity matrix. Note that

Aw = M
1
2
2 (w1N + w2I)M

1
2
2

and
Gw = M

1
2
2 N

w1M
1
2
2 .

Thus, to prove that

1

2

2∑
j=1

wj(Mj − Aw)M−1
2 (Mj − Aw) ≤ Aw −Gw,

it is enough to establish

w1w2

2
M

1
2
2 (I −N)2M

1
2
2 ≤M

1
2
2 (w1N + w2I)M

1
2
2 −M

1
2
2 N

w1M
1
2
2 .
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This is true if and only if

w1w2

2
(I −N)2 ≤ w1N + w2I −Nw1 .

Note that, since M1 ≤ M2, N is a positive matrix with N ≤ I. Now N = U∗DU,
where D is a diagonal matrix [d1, · · · , dn] and U is a unitary matrix. Since 0 < N ≤ I, it
follows that 0 < D ≤ I and so 0 < di ≤ 1 (1 ≤ i ≤ n). By Lemma 1, we have

w1w2

2
(1− di)

2 ≤ w1di + w2 − dw1
i (1 ≤ i ≤ n).

So
w1w2

2
(I −D)2 ≤ w1D + w2I −Dw1 ,

and this implies that
w1w2

2
(I −N)2 ≤ w1N + w2I −Nw1 .

Hence
1

2

2∑
j=1

wj(Mj − Aw)M−1
2 (Mj − Aw) ≤ Aw −Gw.

Equality holds if and only if D = I, that is, N = I and M1 = M2.

Next, we prove the right hand inequality, using similar techniques. A computation
shows that

2∑
j=1

wj(Mj − Aw)M−1
1 (Mj − Aw) = w1w2M

1
2
2 (I −N)2N−1M

1
2
2 .

Hence, to establish

Aw −Gw ≤
1

2

2∑
j=1

wj(Mj − Aw)M−1
1 (Mj − Aw),

we need to show

M
1
2
2 (w1N + w2I)M

1
2
2 −M

1
2
2 N

w1M
1
2
2 ≤

1

2
w1w2M

1
2
2 (I −N)2N−1M

1
2
2 .

But this is true if and only if

w1N
2 + w2N −Nw1+1 ≤ 1

2
w1w2(I −N)2,

and this follows from Lemma 1 via the diagonalization technique above. Again, equality
holds if and only if N = I, that is M1 = M2.

It is natural to ask whether our matrix extension of the Cartwright-Field inequality
can be carried over to the case of three or more matrices. If the matrices commute, this is
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no problem. Indeed, no ordering hypothesis is necessary in the presence of commutativity.
Commuting positive matrices can be viewed as elements of a commutative C∗ algebra,
which, by Gelfand’s theorem [3], is isometrically ∗-isomorphic to the algebra C(K) of
continuous functions on an appropriate compact Hausdorff space K. The positive matrices
then correspond to positive functions, and the scalar inequality of Cartwright and Field
can be applied at each point of K. When we drop the commutativity hypothesis, we
are unable to prove analogs of Theorem 2 for more than two matrices. This is possibly
related to general problems with the geometric mean of more than two matrices that we
illustrated above.

4. Matrix refinements of the arithmetic-geometric-harmonic mean
inequality

Recall that if w1, . . . , wk are positive number summing to 1, the weighted harmonic
mean of the positive numbers x1, . . . , xk is

Hw := Hw(x1, . . . , xk) = (w1x
−1
1 + · · ·+ wkx

−1
k )−1.

The classical result that
Hw ≤ Gw ≤ Aw

has been extensively refined. Building on a result of Alzer [1], Mercer [5] found an
extensive collection of inequalities that he proved using a global technique. We summarize
some of his results.

Theorem 3 (Mercer) Let xi (1 ≤ i ≤ k) be real numbers, ordered so that 0 < x1 ≤

· · · ≤ xk, and let wi (1 ≤ i ≤ k) be positive numbers with
k∑

i=1

wi = 1. Then, if we

write Aw = Aw(x1, . . . , xk), Gw = Gw(x1, . . . , xk), and Hw = Hw(x1, . . . , xk), we have

(1) 1
2xk

k∑
j=1

wj(xj −Gw)2 ≤ Aw −Gw ≤ 1
2x1

k∑
j=1

wj(xj −Gw)2;

(2) 1
2xk

k∑
j=1

wj(xj −Hw)2 ≤ Aw −Hw;

(3) Gw

2x2
k

k∑
j=1

wj(xj −Gw)2 ≤ Gw −Hw ≤ Gw

2x2
1

k∑
j=1

wj(xj −Gw)2;

(4) Gw

2x2
k

k∑
j=1

wj(xj −Hw)2 ≤ Gw −Hw ≤ Gw

2x2
1

k∑
j=1

wj(xj −Hw)2.

These inequalities are strict unless all the xi are equal.

The right hand side of (1) had been established by Alzer [1].

A natural question is whether a version of Mercer’s theorem holds for positive matrices.
We are able to provide a positive answer in the case of two matrices?
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Lemma 2 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1, and t ∈ (0, 1], then

w1t
2 + w2t− tw1+1 ≤ 1

2

[
w1(t− tw1)2 + w2(1− tw1)2

]
≤ w1t + w2 − tw1 . (1′)

Equality holds if and only if t = 1.

Proof We start to prove the right hand inequality of (1′). First of all, we have

1

2

[
w1(t− tw1)2 + w2(1− tw1)2

]
≤ w1t + w2 − tw1

⇐⇒ − 1

2
w2 − w1t +

1

2
w1t

2 + w1t
w1 − w1t

w1+1 +
1

2
t2w1 ≤ 0.

Let

f(t) = − 1

2
w2 − w1t +

1

2
w1t

2 + w1t
w1 − w1t

w1+1 +
1

2
t2w1 .

Then f(1) = 0 and

f ′(t) = −w1 + w1t + w2
1t

w1−1 − w1(w1 + 1)tw1 + w1t
2w1−1.

Doing more we have that f ′(1) = 0,

f ′′(t) = w1 + w2
1(w1 − 1)tw1−2 − w2

1(w1 + 1)tw1−1 + w1(2w1 − 1)t2w1−2,

and f ′′(1) = 0. Taking the third derivative of f(t) with simplification, we have

f ′′′(t) = w1w2t
w1−3[w2

1 + w1w2t + 2w2t
w1 + 2w1(w1t + w2 − tw1)].

Notice that the right hand inequality of Lemma 1 implies

w1t + w2 − tw1 > 0,

so we have f ′′′(t) > 0, which implies that f ′′(t) is increasing on (0, 1] and f ′′(t) ≤ f ′′(1) =
0, that means f ′(t) is decreasing on (0, 1] and f ′(t) ≥ f ′(1) = 0. Hence f(t) is increasing
on (0, 1] and f(t) ≤ f(1) = 0, which means the right hand inequality of (1′) holds.

Similarly, using the same way we prove the left hand inequality of (1′). It is easy to
check that

w1t
2 + w2t− tw1+1 ≤ 1

2

[
w1(t− tw1)2 + w2(1− tw1)2

]
⇐⇒ − 1

2
w2 + w2t +

1

2
w1t

2 + w2t
w1 − w2t

w1+1 − 1

2
t2w1 ≤ 0.

Let

g(t) = − 1

2
w2 + w2t +

1

2
w1t

2 + w2t
w1 − w2t

w1+1 − 1

2
t2w1 ,
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then g(1) = 0 and

g′(t) = w2 + w1t + w1w2t
w1−1 − w2(w1 + 1)tw1 − w1t

2w1−1.

Doing more we have g′(1) = 0,

g′′(t) = w1 − w1w
2
2t

w1−2 − w1w2(w1 + 1)tw1−1 − w1(2w1 − 1)t2w1−2,

and g′′(1) = 0. Continuously taking the third derivative of g(t), we have

g′′′(t) = w1w2t
w1−3[w1w2 + w2

2t + 2w1t
w1 + 2w2(w1t + w2 − tw1)].

By the right hand inequality of Lemma 1, we have g′′′(t) > 0 on (0, 1]. Hence the left hand
inequality of (1′) holds.

The generalization of inequality (1) in Theorem 3 to the case of two matrices is given
as follows.

Theorem 4 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1. Let M1, M2 be positive n × n
matrices with M2 ≥M1. Write Aw = Aw(M1,M2) and Gw = Gw(M1,M2). Then

1

2

2∑
j=1

wj(Mj −Gw)M−1
2 (Mj −Gw) ≤ Aw −Gw ≤

1

2

2∑
j=1

wj(Mj −Gw)M−1
1 (Mj −Gw).

Equality holds if and only if M1 = M2.

Proof We start to prove the left side of the inequality. First of all, we have

M1 −Gw = M
1
2
2 (N −Nw1)M

1
2
2 and M2 −Gw = M

1
2
2 (I −Nw1)M

1
2
2 ,

which imply that

2∑
j=1

wj(Mj −Gw)M−1
2 (Mj −Gw)

= w1M
1
2
2 (N −Nw1)2M

1
2
2 + w2M

1
2
2 (I −Nw1)2M

1
2
2 .

= M
1
2
2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
M

1
2
2 .

Hence

1

2

2∑
j=1

wj(Mj −Gw)M−1
2 (Mj −Gw) ≤ Aw −Gw

⇐⇒ 1

2
M

1
2
2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
M

1
2
2 ≤M

1
2
2 (w1N + w2I −Nw1)M

1
2
2

⇐⇒ 1

2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
≤ w1N + w2I −Nw1 ,
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which holds since the right hand inequality of (1′). Equality holds if and only if N = I,
that is M1 = M2.

Next, we going to prove the right side of the inequality. We have

2∑
j=1

wj(Mj −Gw)M−1
1 (Mj −Gw)

= w1M
1
2
2 (N −Nw1)N−1(N −Nw1)M

1
2
2 + w2M

1
2
2 (I −Nw1)N−1(I −Nw1)M

1
2
2

= M
1
2
2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
N−1M

1
2
2 .

Hence

Aw −Gw ≤
1

2

2∑
j=1

wj(Mj −Gw)M−1
1 (Mj −Gw)

⇐⇒ w1N + w2I −Nw1 ≤ 1

2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
N−1

⇐⇒ w1N
2 + w2N −Nw1+1 ≤ 1

2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
,

which holds since the left hand inequality of (1′). Equality holds if and only if N = I,
that is M1 = M2.

For the generalization of inequality (2) in Theorem 3, we need the following lemma.

Lemma 3 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1, and t ∈ (0, 1], then

1

2

[
w1

(
t− t

w1 + w2t

)2

+ w2

(
1− t

w1 + w2t

)2
]
≤ w1t + w2 −

t

w1 + w2t
. (2′)

Equality holds if and only if t = 1.

Proof After algebraic simplification, we have

w1

(
t− t

w1 + w2t

)2

+ w2

(
1− t

w1 + w2t

)2

=
w1w2(t− 1)2

(w1 + w2t)2
(w2t

2 + w1).
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Hence

1

2

[
w1

(
t− t

w1 + w2t

)2

+ w2

(
1− t

w1 + w2t

)2
]
≤ w1t + w2 −

t

w1 + w2t

⇐⇒ w1w2(t− 1)2

2(w1 + w2t)2
(w2t

2 + w1) ≤
w1w2(1− t)2

w1 + w2t

⇐⇒ w2t
2 + w1

2(w1 + w2t)
≤ 1

⇐⇒ w2(t− 1)2 ≤ 1,

which is obvious.

The matrix version of inequality (2) in Theorem 3 to the case of two matrices as
follows.

Theorem 5 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1. Let M1, M2 be positive n × n
matrices with M2 ≥M1. Write Aw = Aw(M1,M2) and Hw = Hw(M1,M2). Then

1

2

2∑
j=1

wj(Mj −Hw)M−1
2 (Mj −Hw) ≤ Aw −Hw.

Equality holds if and only if M1 = M2.

Proof As before, it is convenient to use N = M
− 1

2
2 M1M

− 1
2

2 . In addition, we set C =
(w1I + w2N)−1. We have already seen that 0 < N ≤ I, when M1 ≤ M2, and it is clear
that N and C commute. By the definition of Hw, we have

Hw =
(
w1M

− 1
2

2 N−1M
− 1

2
2 + w2M

− 1
2

2 IM
− 1

2
2

)−1
= M

1
2
2

(
N(w1I + w2N)−1

)
M

1
2
2

= M
1
2
2 NCM

1
2
2 .

Hence

M1 −Hw = M
1
2
2 (N −NC)M

1
2
2 ,

M2 −Hw = M
1
2
2 (I −NC)M

1
2
2 .

11



Thus,

1

2

2∑
j=1

wj(Mj −Hw)M−1
2 (Mj −Hw) ≤ Aw −Hw

⇐⇒ 1

2

[
w1(N −NC)2 + w2(I −NC)2

]
≤ w1N + w2I −NC,

which holds since inequality (2′). Equality holds if and only if N = I, that is M1 = M2.

We give the following lemma for generalizing the inequality (3) in Theorem 3.

Lemma 4 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1, and t ∈ (0, 1], then

t2 − tw2+2

w1 + w2t
≤ 1

2

[
w1(t− tw1)2 + w2(1− tw1)2

]
≤ 1− tw2

w1 + w2t
. (3′)

Equality holds if and only if t = 1.

Proof It is difficult that giving immediately proof for inequalities (3′) with the same
way of Lemma 1. With the help of inequalities (iii) in Theorem 3, we give the following
proof of inequalities (3′).

Let k = 2 in the inequalities (iii) of Theorem 3, we have

Gw

2x2
2

2∑
j=1

wj(xj −Gw)2 ≤ Gw −Hw ≤
Gw

2x2
1

2∑
j=1

wj(xj −Gw)2,

which is equivalent to

xw1
1 xw2

2

2x2
2

2∑
j=1

wj(xj−xw1
1 xw2

2 )2 ≤ xw1
1 xw2

2 −(w1x
−1
1 +w2x

−1
2 )−1 ≤ xw1

1 xw2
2

2x2
1

2∑
j=1

wj(xj−xw1
1 xw2

2 )2.

Since x1 ≤ x2, let t = x1/x2, then 0 < t ≤ 1, and after a few steps of verifying we have

xw1
1 xw2

2 − (w1x
−1
1 + w2x

−1
2 )−1 = x2t

w1

[
1− tw2

w1 + w2t

]
,

xw1
1 xw2

2

2x2
2

2∑
j=1

wj(xj − xw1
1 xw2

2 )2 =
1

2
x2t

w1
[
w1(t− tw1)2 + w2(1− tw1)2

]
,

and
xw1
1 xw2

2

2x2
1

2∑
j=1

wj(xj − xw1
1 xw2

2 )2 =
1

2
x2t

w1−2
[
w1(t− tw1)2 + w2(1− tw1)2

]
.

From these we imply that the inequalities (3′) holds.

The matrix version corresponding the inequality (3) in Theorem 3 is the following.
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Theorem 6 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1. Let M1, M2 be positive n × n
matrices with M2 ≥M1. Write Gw = Gw(M1,M2) and Hw = Hw(M1,M2). Then

1

2
GwM

−1
2

2∑
j=1

wj(Mj −Gw)M−1
2 (Mj −Gw) ≤ Gw −Hw

≤ 1

2
GwM

−1
1

2∑
j=1

wj(Mj −Gw)M−1
1 (Mj −Gw).

Equality holds if and only if M1 = M2.

Proof First we prove the left side of the inequality. Using the notation in Theorem 5
we used, we have

1

2
GwM

−1
2

2∑
j=1

wj(Mj −Gw)M−1
2 (Mj −Gw) ≤ Gw −Hw

⇐⇒ 1

2
M

1
2
2 N

w1
[
w1(N −Nw1)2 + w2(I −Nw1)2

]
M

1
2
2 ≤M

1
2
2 (Nw1 −NC)M

1
2
2

⇐⇒ 1

2
Nw1

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
≤ Nw1 −NC

⇐⇒ 1

2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
≤ I −Nw2C,

which holds since the right hand inequality of (3′). Equality holds if and only if N = I,
that is M1 = M2.

Now we prove the right side of the inequality. We have

Gw −Hw ≤
1

2
GwM

−1
1

2∑
j=1

wj(Mj −Gw)M−1
1 (Mj −Gw)

⇐⇒ Nw1 −NC ≤ 1

2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
Nw1−2

⇐⇒ N2 −Nw2+2C ≤ 1

2

[
w1(N −Nw1)2 + w2(I −Nw1)2

]
,

which holds since the left hand inequality of (3′). Equality holds if and only if N = I,
that is M1 = M2.

We turn to the last inequality (4) in Theorem 3. Similarly we give the following lemma.

Lemma 5 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1, and t ∈ (0, 1], then

t2 − tw2+2

w1 + w2t
≤ 1

2

[
w1

(
t− t

w1 + w2t

)2

+ w2

(
1− t

w1 + w2t

)2
]
≤ 1− tw2

w1 + w2t
. (4′)

Equality holds if and only if t = 1.
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Proof First we prove the right hand inequality of (4′). From the proof of Lemma 3 we
have

1

2

[
w1

(
t− t

w1 + w2t

)2

+ w2

(
1− t

w1 + w2t

)2
]
≤ 1− tw2

w1 + w2t

⇐⇒ w1w2(t− 1)2

2(w1 + w2t)2
(w2t

2 + w1) ≤
(w1 + w2t)

2 − (w1 + w2t)t
w2

(w1 + w2t)2

⇐⇒ 1

2
w1w2(1− t)2(w2t

2 + w1) ≤ (w1 + w2t)(w1 + w2t− tw2).

If t = 1, this is certainly true, and in fact becomes an equality. If t 6= 1, by the right hand
inequality of Lemma 1, we have

0 <
1

2
w1w2(1− t)2 ≤ w1 + w2t− tw2 .

Consequently, we can achieve our goal by showing that

w1 + w2t
2 < w1 + w2t,

when t 6= 1. However this follows the facts that t ∈ (0, 1) and w2 > 0.

Next we prove the left hand inequality of (4′). We know that

t2 − tw2+2

w1 + w2t
≤ 1

2

[
w1

(
t− t

w1 + w2t

)2

+ w2

(
1− t

w1 + w2t

)2
]

⇐⇒ t2(w1 + w2t)
2 − tw2+2(w1 + w2t)

(w1 + w2t)2
≤ w1w2(t− 1)2

2(w1 + w2t)2
(w2t

2 + w1)

⇐⇒ (w1t + w2t
2)(w1t + w2t

2 − tw2+1) ≤ 1

2
w1w2(1− t)2(w2t

2 + w1).

If t = 1, this is certainly true, and in fact becomes an equality. If t 6= 1, by the left hand
inequality of Lemma 1, we have

0 < w1t + w2t
2 − tw2+1 ≤ 1

2
w1w2(1− t)2.

Since 0 < t < 1,
w1t + w2t

2 < w1 + w2t
2

holds, the proof is completed.

Here is the matrix version of inequality (4) in Theorem 3 to the case of two matrices.
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Theorem 7 Let w1 > 0, w2 > 0 satisfy w1 + w2 = 1. Let M1, M2 be positive n × n
matrices with M2 ≥M1. Write Gw = Gw(M1,M2) and Hw = Hw(M1,M2). Then

1

2
GwM

−1
2

2∑
j=1

w1(Mj −Hw)M−1
2 (Mj −Hw) ≤ Gw −Hw

≤ 1

2
GwM

−1
1

2∑
j=1

w1(Mj −Hw)M−1
1 (Mj −Hw).

Equality holds if and only if M1 = M2.

Proof It is similar with Theorem 5, we have

1

2
GwM

−1
2

2∑
j=1

w1(Mj −Hw)M−1
2 (Mj −Hw) ≤ Gw −Hw

⇐⇒ 1

2
Nw1

[
w1(N −NC)2 + w2(I −NC)2

]
≤ Nw1 −NC

⇐⇒ 1

2

[
w1(N −NC)2 + w2(I −NC)2

]
≤ I −Nw2C,

which holds since the right hand inequality of (4′). Equality holds if and only if N = I,
that is M1 = M2.

For the right hand inequality, we have

Gw −Hw ≤
1

2
GwM

−1
1

2∑
j=1

w1(Mj −Hw)M−1
1 (Mj −Hw)

⇐⇒ Nw1 −NC ≤ 1

2
Nw1−2

[
w1(N −NC)2 + w2(I −NC)2

]
⇐⇒ N2 −Nw2+2C ≤ 1

2

[
w1(N −NC)2 + w2(I −NC)2

]
,

which holds since the left hand inequality of (4′). Equality holds if and only if N = I,
that is M1 = M2.

As with the Cartwright-Field inequality, Theorem 4 to Theorem 7 can be extended
(without the need for an ordering hypothesis) to the case of several commuting positive
n × n matrices. It would be interesting to know whether the commutativity or ordering
hypothesis can be dropped.
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